1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
// Copyright 2018 the Deno authors. All rights reserved. MIT license.
// Do not use FlatBuffers in this module.
// TODO Currently this module uses Tokio, but it would be nice if they were
// decoupled.
use deno_dir;
use errors::DenoError;
use flags;
use libdeno;
use futures::Future;
use libc::c_void;
use std;
use std::ffi::CStr;
use std::ffi::CString;
use std::sync::atomic;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
use std::time::Duration;
use std::time::Instant;
use tokio;
use tokio_util;
type DenoException<'a> = &'a str;
// Buf represents a byte array returned from a "Op".
// The message might be empty (which will be translated into a null object on
// the javascript side) or it is a heap allocated opaque sequence of bytes.
// Usually a flatbuffer message.
pub type Buf = Box<[u8]>;
// JS promises in Deno map onto a specific Future
// which yields either a DenoError or a byte array.
pub type Op = Future<Item = Buf, Error = DenoError> + Send;
// Returns (is_sync, op)
pub type Dispatch =
fn(isolate: &mut Isolate, buf: &[u8], data_buf: &'static mut [u8])
-> (bool, Box<Op>);
pub struct Isolate {
ptr: *const libdeno::isolate,
dispatch: Dispatch,
rx: mpsc::Receiver<(i32, Buf)>,
// Although Isolate is only accessed on the main thread, we use an atomic
// variable here to workaround an issue probably caused by our poor usage
// of Box::leak in Isolate::from_c()
// https://github.com/denoland/deno/issues/919
// ntasks ought to be i32.
ntasks: atomic::AtomicIsize,
pub timeout_due: Option<Instant>,
pub state: Arc<IsolateState>,
}
// Isolate cannot be passed between threads but IsolateState can. So any state that
// needs to be accessed outside the main V8 thread should be inside IsolateState.
pub struct IsolateState {
pub dir: deno_dir::DenoDir,
pub argv: Vec<String>,
pub flags: flags::DenoFlags,
tx: Mutex<Option<mpsc::Sender<(i32, Buf)>>>,
}
impl IsolateState {
// Thread safe.
fn send_to_js(&self, req_id: i32, buf: Buf) {
let mut g = self.tx.lock().unwrap();
let maybe_tx = g.as_mut();
assert!(maybe_tx.is_some(), "Expected tx to not be deleted.");
let tx = maybe_tx.unwrap();
tx.send((req_id, buf)).expect("tx.send error");
}
}
static DENO_INIT: std::sync::Once = std::sync::ONCE_INIT;
impl Isolate {
pub fn new(argv: Vec<String>, dispatch: Dispatch) -> Box<Isolate> {
DENO_INIT.call_once(|| {
unsafe { libdeno::deno_init() };
});
let (flags, argv_rest) = flags::set_flags(argv);
// This channel handles sending async messages back to the runtime.
let (tx, rx) = mpsc::channel::<(i32, Buf)>();
let mut isolate = Box::new(Isolate {
ptr: 0 as *const libdeno::isolate,
dispatch,
rx,
ntasks: atomic::AtomicIsize::new(0),
timeout_due: None,
state: Arc::new(IsolateState {
dir: deno_dir::DenoDir::new(flags.reload, None).unwrap(),
argv: argv_rest,
flags,
tx: Mutex::new(Some(tx)),
}),
});
(*isolate).ptr = unsafe {
libdeno::deno_new(
isolate.as_ref() as *const _ as *const c_void,
pre_dispatch,
)
};
isolate
}
pub fn from_c<'a>(d: *const libdeno::isolate) -> &'a mut Isolate {
let ptr = unsafe { libdeno::deno_get_data(d) };
let ptr = ptr as *mut Isolate;
let isolate_box = unsafe { Box::from_raw(ptr) };
Box::leak(isolate_box)
}
pub fn execute(
&self,
js_filename: &str,
js_source: &str,
) -> Result<(), DenoException> {
let filename = CString::new(js_filename).unwrap();
let source = CString::new(js_source).unwrap();
let r = unsafe {
libdeno::deno_execute(self.ptr, filename.as_ptr(), source.as_ptr())
};
if r == 0 {
let ptr = unsafe { libdeno::deno_last_exception(self.ptr) };
let cstr = unsafe { CStr::from_ptr(ptr) };
return Err(cstr.to_str().unwrap());
}
Ok(())
}
pub fn respond(&self, req_id: i32, buf: Buf) {
// TODO(zero-copy) Use Buf::leak(buf) to leak the heap allocated buf. And
// don't do the memcpy in ImportBuf() (in libdeno/binding.cc)
unsafe { libdeno::deno_respond(self.ptr, req_id, buf.into()) }
}
fn complete_op(&mut self, req_id: i32, buf: Buf) {
// Receiving a message on rx exactly corresponds to an async task
// completing.
self.ntasks_decrement();
// Call into JS with the buf.
self.respond(req_id, buf);
}
fn timeout(&self) {
let dummy_buf = libdeno::deno_buf {
alloc_ptr: 0 as *mut u8,
alloc_len: 0,
data_ptr: 0 as *mut u8,
data_len: 0,
};
unsafe { libdeno::deno_respond(self.ptr, -1, dummy_buf) }
}
// TODO Use Park abstraction? Note at time of writing Tokio default runtime
// does not have new_with_park().
pub fn event_loop(&mut self) {
// Main thread event loop.
while !self.is_idle() {
// Ideally, mpsc::Receiver would have a receive method that takes a optional
// timeout. But it doesn't so we need all this duplicate code.
match self.timeout_due {
Some(due) => {
// Subtracting two Instants causes a panic if the resulting duration
// would become negative. Avoid this.
let now = Instant::now();
let timeout = if due > now {
due - now
} else {
Duration::new(0, 0)
};
// TODO: use recv_deadline() instead of recv_timeout() when this
// feature becomes stable/available.
match self.rx.recv_timeout(timeout) {
Ok((req_id, buf)) => self.complete_op(req_id, buf),
Err(mpsc::RecvTimeoutError::Timeout) => self.timeout(),
Err(e) => panic!("mpsc::Receiver::recv_timeout() failed: {:?}", e),
}
}
None => match self.rx.recv() {
Ok((req_id, buf)) => self.complete_op(req_id, buf),
Err(e) => panic!("mpsc::Receiver::recv() failed: {:?}", e),
},
};
}
}
fn ntasks_increment(&mut self) {
let previous_ntasks = self.ntasks.fetch_add(1, atomic::Ordering::SeqCst);
assert!(previous_ntasks >= 0);
}
fn ntasks_decrement(&mut self) {
let previous_ntasks = self.ntasks.fetch_sub(1, atomic::Ordering::SeqCst);
assert!(previous_ntasks >= 1);
}
fn is_idle(&self) -> bool {
let n = self.ntasks.load(atomic::Ordering::SeqCst);
n == 0 && self.timeout_due.is_none()
}
}
impl Drop for Isolate {
fn drop(&mut self) {
unsafe { libdeno::deno_delete(self.ptr) }
}
}
/// Converts Rust Buf to libdeno deno_buf.
impl From<Buf> for libdeno::deno_buf {
fn from(x: Buf) -> libdeno::deno_buf {
let len = x.len();
let ptr = Box::into_raw(x);
libdeno::deno_buf {
alloc_ptr: 0 as *mut u8,
alloc_len: 0,
data_ptr: ptr as *mut u8,
data_len: len,
}
}
}
// Dereferences the C pointer into the Rust Isolate object.
extern "C" fn pre_dispatch(
d: *const libdeno::isolate,
req_id: i32,
control_buf: libdeno::deno_buf,
data_buf: libdeno::deno_buf,
) {
// control_buf is only valid for the lifetime of this call, thus is
// interpretted as a slice.
let control_slice = unsafe {
std::slice::from_raw_parts(control_buf.data_ptr, control_buf.data_len)
};
// data_buf is valid for the lifetime of the promise, thus a mutable buf with
// static lifetime.
let data_slice = unsafe {
std::slice::from_raw_parts_mut::<'static>(
data_buf.data_ptr,
data_buf.data_len,
)
};
let isolate = Isolate::from_c(d);
let dispatch = isolate.dispatch;
let (is_sync, op) = dispatch(isolate, control_slice, data_slice);
if is_sync {
// Execute op synchronously.
let buf = tokio_util::block_on(op).unwrap();
if buf.len() != 0 {
// Set the synchronous response, the value returned from isolate.send().
isolate.respond(req_id, buf);
}
} else {
// Execute op asynchronously.
let state = isolate.state.clone();
// TODO Ideally Tokio would could tell us how many tasks are executing, but
// it cannot currently. Therefore we track top-level promises/tasks
// manually.
isolate.ntasks_increment();
let task = op
.and_then(move |buf| {
state.send_to_js(req_id, buf);
Ok(())
}).map_err(|_| ());
tokio::spawn(task);
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures;
#[test]
fn test_c_to_rust() {
let argv = vec![String::from("./deno"), String::from("hello.js")];
let isolate = Isolate::new(argv, unreachable_dispatch);
let isolate2 = Isolate::from_c(isolate.ptr);
assert_eq!(isolate.ptr, isolate2.ptr);
assert_eq!(
isolate.state.dir.root.join("gen"),
isolate.state.dir.gen,
"Sanity check"
);
}
fn unreachable_dispatch(
_isolate: &mut Isolate,
_control: &[u8],
_data: &'static mut [u8],
) -> (bool, Box<Op>) {
unreachable!();
}
#[test]
fn test_dispatch_sync() {
let argv = vec![String::from("./deno"), String::from("hello.js")];
let mut isolate = Isolate::new(argv, dispatch_sync);
tokio_util::init(|| {
isolate
.execute(
"y.js",
r#"
const m = new Uint8Array([4, 5, 6]);
let n = libdeno.send(m);
if (!(n.byteLength === 3 &&
n[0] === 1 &&
n[1] === 2 &&
n[2] === 3)) {
throw Error("assert error");
}
"#,
).expect("execute error");
isolate.event_loop();
});
}
fn dispatch_sync(
_isolate: &mut Isolate,
control: &[u8],
data: &'static mut [u8],
) -> (bool, Box<Op>) {
assert_eq!(control[0], 4);
assert_eq!(control[1], 5);
assert_eq!(control[2], 6);
assert_eq!(data.len(), 0);
// Send back some sync response.
let vec: Vec<u8> = vec![1, 2, 3];
let control = vec.into_boxed_slice();
let op = Box::new(futures::future::ok(control));
(true, op)
}
}
|