summaryrefslogtreecommitdiff
path: root/ext/net/tcp.rs
blob: 63baa8e4befdc601670d4fddae4c1926326d7b95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use std::collections::HashMap;
use std::net::SocketAddr;
use std::sync::Arc;

use socket2::Domain;
use socket2::Protocol;
use socket2::Type;

/// Our per-process `Connections`. We can use this to find an existent listener for
/// a given local address and clone its socket for us to listen on in our thread.
static CONNS: std::sync::OnceLock<std::sync::Mutex<Connections>> =
  std::sync::OnceLock::new();

/// Maintains a map of listening address to `TcpConnection`.
#[derive(Default)]
struct Connections {
  tcp: HashMap<SocketAddr, Arc<TcpConnection>>,
}

/// Holds an open listener. We clone the underlying file descriptor (unix) or socket handle (Windows)
/// and then listen on our copy of it.
pub struct TcpConnection {
  /// The pristine FD that we'll clone for each LB listener
  #[cfg(unix)]
  sock: std::os::fd::OwnedFd,
  #[cfg(not(unix))]
  sock: std::os::windows::io::OwnedSocket,
  key: SocketAddr,
}

impl TcpConnection {
  /// Boot a load-balanced TCP connection
  pub fn start(key: SocketAddr) -> std::io::Result<Self> {
    let listener = bind_socket_and_listen(key, false)?;
    let sock = listener.into();

    Ok(Self { sock, key })
  }

  fn listener(&self) -> std::io::Result<tokio::net::TcpListener> {
    let listener = std::net::TcpListener::from(self.sock.try_clone()?);
    let listener = tokio::net::TcpListener::from_std(listener)?;
    Ok(listener)
  }
}

/// A TCP socket listener that optionally allows for round-robin load-balancing in-process.
pub struct TcpListener {
  listener: Option<tokio::net::TcpListener>,
  conn: Option<Arc<TcpConnection>>,
}

/// Does this platform implement `SO_REUSEPORT` in a load-balancing manner?
const REUSE_PORT_LOAD_BALANCES: bool =
  cfg!(any(target_os = "android", target_os = "linux"));

impl TcpListener {
  /// Bind to a port. On Linux, or when we don't have `SO_REUSEPORT` set, we just bind the port directly.
  /// On other platforms, we emulate `SO_REUSEPORT` by cloning the socket and having each clone race to
  /// accept every connection.
  ///
  /// ## Why not `SO_REUSEPORT`?
  ///
  /// The `SO_REUSEPORT` socket option allows multiple sockets on the same host to bind to the same port. This is
  /// particularly useful for load balancing or implementing high availability in server applications.
  ///
  /// On Linux, `SO_REUSEPORT` allows multiple sockets to bind to the same port, and the kernel will load
  /// balance incoming connections among those sockets. Each socket can accept connections independently.
  /// This is useful for scenarios where you want to distribute incoming connections among multiple processes
  /// or threads.
  ///
  /// On macOS (which is based on BSD), the behaviour of `SO_REUSEPORT` is slightly different. When `SO_REUSEPORT` is set,
  /// multiple sockets can still bind to the same port, but the kernel does not perform load balancing as it does on Linux.
  /// Instead, it follows a "last bind wins" strategy. This means that the most recently bound socket will receive
  /// incoming connections exclusively, while the previously bound sockets will not receive any connections.
  /// This behaviour is less useful for load balancing compared to Linux, but it can still be valuable in certain scenarios.
  pub fn bind(
    socket_addr: SocketAddr,
    reuse_port: bool,
  ) -> std::io::Result<Self> {
    if REUSE_PORT_LOAD_BALANCES && reuse_port {
      Self::bind_load_balanced(socket_addr)
    } else {
      Self::bind_direct(socket_addr, reuse_port)
    }
  }

  /// Bind directly to the port, passing `reuse_port` directly to the socket. On platforms other
  /// than Linux, `reuse_port` does not do any load balancing.
  pub fn bind_direct(
    socket_addr: SocketAddr,
    reuse_port: bool,
  ) -> std::io::Result<Self> {
    // We ignore `reuse_port` on platforms other than Linux to match the existing behaviour.
    let listener = bind_socket_and_listen(socket_addr, reuse_port)?;
    Ok(Self {
      listener: Some(tokio::net::TcpListener::from_std(listener)?),
      conn: None,
    })
  }

  /// Bind to the port in a load-balanced manner.
  pub fn bind_load_balanced(socket_addr: SocketAddr) -> std::io::Result<Self> {
    let tcp = &mut CONNS.get_or_init(Default::default).lock().unwrap().tcp;
    if let Some(conn) = tcp.get(&socket_addr) {
      let listener = Some(conn.listener()?);
      return Ok(Self {
        listener,
        conn: Some(conn.clone()),
      });
    }
    let conn = Arc::new(TcpConnection::start(socket_addr)?);
    let listener = Some(conn.listener()?);
    tcp.insert(socket_addr, conn.clone());
    Ok(Self {
      listener,
      conn: Some(conn),
    })
  }

  pub async fn accept(
    &self,
  ) -> std::io::Result<(tokio::net::TcpStream, SocketAddr)> {
    let (tcp, addr) = self.listener.as_ref().unwrap().accept().await?;
    Ok((tcp, addr))
  }

  pub fn local_addr(&self) -> std::io::Result<SocketAddr> {
    self.listener.as_ref().unwrap().local_addr()
  }
}

impl Drop for TcpListener {
  fn drop(&mut self) {
    // If we're in load-balancing mode
    if let Some(conn) = self.conn.take() {
      let mut tcp = CONNS.get().unwrap().lock().unwrap();
      if Arc::strong_count(&conn) == 2 {
        tcp.tcp.remove(&conn.key);
        // Close the connection
        debug_assert_eq!(Arc::strong_count(&conn), 1);
        drop(conn);
      }
    }
  }
}

/// Bind a socket to an address and listen with the low-level options we need.
#[allow(unused_variables)]
fn bind_socket_and_listen(
  socket_addr: SocketAddr,
  reuse_port: bool,
) -> Result<std::net::TcpListener, std::io::Error> {
  let socket = if socket_addr.is_ipv4() {
    socket2::Socket::new(Domain::IPV4, Type::STREAM, Some(Protocol::TCP))?
  } else {
    socket2::Socket::new(Domain::IPV6, Type::STREAM, Some(Protocol::TCP))?
  };
  #[cfg(not(windows))]
  if REUSE_PORT_LOAD_BALANCES && reuse_port {
    socket.set_reuse_port(true)?;
  }
  #[cfg(not(windows))]
  // This is required for re-use of a port immediately after closing. There's a small
  // security trade-off here but we err on the side of convenience.
  //
  // https://stackoverflow.com/questions/14388706/how-do-so-reuseaddr-and-so-reuseport-differ
  // https://stackoverflow.com/questions/26772549/is-it-a-good-idea-to-reuse-port-using-option-so-reuseaddr-which-is-already-in-ti
  socket.set_reuse_address(true)?;
  socket.set_nonblocking(true)?;
  socket.bind(&socket_addr.into())?;
  socket.listen(128)?;
  let listener = socket.into();
  Ok(listener)
}