summaryrefslogtreecommitdiff
path: root/ext/crypto/generate_key.rs
blob: 3c0bd77c22641cda3f2a8483740c45e251179088 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.

use deno_core::op2;
use deno_core::unsync::spawn_blocking;
use deno_core::ToJsBuffer;
use elliptic_curve::rand_core::OsRng;
use num_traits::FromPrimitive;
use once_cell::sync::Lazy;
use ring::rand::SecureRandom;
use ring::signature::EcdsaKeyPair;
use rsa::pkcs1::EncodeRsaPrivateKey;
use rsa::BigUint;
use rsa::RsaPrivateKey;
use serde::Deserialize;

use crate::shared::*;

#[derive(Debug, thiserror::Error)]
pub enum GenerateKeyError {
  #[error(transparent)]
  General(#[from] SharedError),
  #[error("Bad public exponent")]
  BadPublicExponent,
  #[error("Invalid HMAC key length")]
  InvalidHMACKeyLength,
  #[error("Failed to serialize RSA key")]
  FailedRSAKeySerialization,
  #[error("Invalid AES key length")]
  InvalidAESKeyLength,
  #[error("Failed to generate RSA key")]
  FailedRSAKeyGeneration,
  #[error("Failed to generate EC key")]
  FailedECKeyGeneration,
  #[error("Failed to generate key")]
  FailedKeyGeneration,
}

// Allowlist for RSA public exponents.
static PUB_EXPONENT_1: Lazy<BigUint> =
  Lazy::new(|| BigUint::from_u64(3).unwrap());
static PUB_EXPONENT_2: Lazy<BigUint> =
  Lazy::new(|| BigUint::from_u64(65537).unwrap());

#[derive(Deserialize)]
#[serde(rename_all = "camelCase", tag = "algorithm")]
pub enum GenerateKeyOptions {
  #[serde(rename = "RSA", rename_all = "camelCase")]
  Rsa {
    modulus_length: u32,
    #[serde(with = "serde_bytes")]
    public_exponent: Vec<u8>,
  },
  #[serde(rename = "EC", rename_all = "camelCase")]
  Ec { named_curve: EcNamedCurve },
  #[serde(rename = "AES", rename_all = "camelCase")]
  Aes { length: usize },
  #[serde(rename = "HMAC", rename_all = "camelCase")]
  Hmac {
    hash: ShaHash,
    length: Option<usize>,
  },
}

#[op2(async)]
#[serde]
pub async fn op_crypto_generate_key(
  #[serde] opts: GenerateKeyOptions,
) -> Result<ToJsBuffer, GenerateKeyError> {
  let fun = || match opts {
    GenerateKeyOptions::Rsa {
      modulus_length,
      public_exponent,
    } => generate_key_rsa(modulus_length, &public_exponent),
    GenerateKeyOptions::Ec { named_curve } => generate_key_ec(named_curve),
    GenerateKeyOptions::Aes { length } => generate_key_aes(length),
    GenerateKeyOptions::Hmac { hash, length } => {
      generate_key_hmac(hash, length)
    }
  };
  let buf = spawn_blocking(fun).await.unwrap()?;
  Ok(buf.into())
}

fn generate_key_rsa(
  modulus_length: u32,
  public_exponent: &[u8],
) -> Result<Vec<u8>, GenerateKeyError> {
  let exponent = BigUint::from_bytes_be(public_exponent);
  if exponent != *PUB_EXPONENT_1 && exponent != *PUB_EXPONENT_2 {
    return Err(GenerateKeyError::BadPublicExponent);
  }

  let mut rng = OsRng;

  let private_key =
    RsaPrivateKey::new_with_exp(&mut rng, modulus_length as usize, &exponent)
      .map_err(|_| GenerateKeyError::FailedRSAKeyGeneration)?;

  let private_key = private_key
    .to_pkcs1_der()
    .map_err(|_| GenerateKeyError::FailedRSAKeySerialization)?;

  Ok(private_key.as_bytes().to_vec())
}

fn generate_key_ec_p521() -> Vec<u8> {
  let mut rng = OsRng;
  let key = p521::SecretKey::random(&mut rng);
  key.to_nonzero_scalar().to_bytes().to_vec()
}

fn generate_key_ec(
  named_curve: EcNamedCurve,
) -> Result<Vec<u8>, GenerateKeyError> {
  let curve = match named_curve {
    EcNamedCurve::P256 => &ring::signature::ECDSA_P256_SHA256_FIXED_SIGNING,
    EcNamedCurve::P384 => &ring::signature::ECDSA_P384_SHA384_FIXED_SIGNING,
    EcNamedCurve::P521 => return Ok(generate_key_ec_p521()),
  };

  let rng = ring::rand::SystemRandom::new();

  let pkcs8 = EcdsaKeyPair::generate_pkcs8(curve, &rng)
    .map_err(|_| GenerateKeyError::FailedECKeyGeneration)?;

  Ok(pkcs8.as_ref().to_vec())
}

fn generate_key_aes(length: usize) -> Result<Vec<u8>, GenerateKeyError> {
  if length % 8 != 0 || length > 256 {
    return Err(GenerateKeyError::InvalidAESKeyLength);
  }

  let mut key = vec![0u8; length / 8];
  let rng = ring::rand::SystemRandom::new();
  rng
    .fill(&mut key)
    .map_err(|_| GenerateKeyError::FailedKeyGeneration)?;

  Ok(key)
}

fn generate_key_hmac(
  hash: ShaHash,
  length: Option<usize>,
) -> Result<Vec<u8>, GenerateKeyError> {
  let hash = match hash {
    ShaHash::Sha1 => &ring::hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
    ShaHash::Sha256 => &ring::hmac::HMAC_SHA256,
    ShaHash::Sha384 => &ring::hmac::HMAC_SHA384,
    ShaHash::Sha512 => &ring::hmac::HMAC_SHA512,
  };

  let length = if let Some(length) = length {
    if length % 8 != 0 {
      return Err(GenerateKeyError::InvalidHMACKeyLength);
    }

    let length = length / 8;
    if length > ring::digest::MAX_BLOCK_LEN {
      return Err(GenerateKeyError::InvalidHMACKeyLength);
    }

    length
  } else {
    hash.digest_algorithm().block_len()
  };

  let rng = ring::rand::SystemRandom::new();
  let mut key = vec![0u8; length];
  rng
    .fill(&mut key)
    .map_err(|_| GenerateKeyError::FailedKeyGeneration)?;

  Ok(key)
}