diff options
author | David Sherret <dsherret@users.noreply.github.com> | 2024-06-05 15:17:35 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-06-05 15:17:35 -0400 |
commit | 1b355d8a87a3ad43bf240aa66b88eb98c1cd777f (patch) | |
tree | 0422d22a6a0e40873eea4c1ef3eff9d6648f1c51 /cli/util/sync | |
parent | 7ed90a20d04982ae15a52ae2378cbffd4b6839df (diff) |
refactor(npm): improve locking around updating npm resolution (#24104)
Introduces a `SyncReadAsyncWriteLock` to make it harder to write to the
npm resolution without first waiting async in a queue. For the npm
resolution, reading synchronously is fine, but when updating, someone
should wait async, clone the data, then write the data at the end back.
Diffstat (limited to 'cli/util/sync')
-rw-r--r-- | cli/util/sync/async_flag.rs | 20 | ||||
-rw-r--r-- | cli/util/sync/atomic_flag.rs | 35 | ||||
-rw-r--r-- | cli/util/sync/mod.rs | 14 | ||||
-rw-r--r-- | cli/util/sync/sync_read_async_write_lock.rs | 62 | ||||
-rw-r--r-- | cli/util/sync/task_queue.rs | 266 | ||||
-rw-r--r-- | cli/util/sync/value_creator.rs | 213 |
6 files changed, 610 insertions, 0 deletions
diff --git a/cli/util/sync/async_flag.rs b/cli/util/sync/async_flag.rs new file mode 100644 index 000000000..2bdff63c0 --- /dev/null +++ b/cli/util/sync/async_flag.rs @@ -0,0 +1,20 @@ +// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. + +use tokio_util::sync::CancellationToken; + +#[derive(Debug, Default, Clone)] +pub struct AsyncFlag(CancellationToken); + +impl AsyncFlag { + pub fn raise(&self) { + self.0.cancel(); + } + + pub fn is_raised(&self) -> bool { + self.0.is_cancelled() + } + + pub fn wait_raised(&self) -> impl std::future::Future<Output = ()> + '_ { + self.0.cancelled() + } +} diff --git a/cli/util/sync/atomic_flag.rs b/cli/util/sync/atomic_flag.rs new file mode 100644 index 000000000..75396dcf4 --- /dev/null +++ b/cli/util/sync/atomic_flag.rs @@ -0,0 +1,35 @@ +// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. + +use std::sync::atomic::AtomicBool; +use std::sync::atomic::Ordering; + +/// Simplifies the use of an atomic boolean as a flag. +#[derive(Debug, Default)] +pub struct AtomicFlag(AtomicBool); + +impl AtomicFlag { + /// Raises the flag returning if the raise was successful. + pub fn raise(&self) -> bool { + !self.0.swap(true, Ordering::SeqCst) + } + + /// Gets if the flag is raised. + pub fn is_raised(&self) -> bool { + self.0.load(Ordering::SeqCst) + } +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn atomic_flag_raises() { + let flag = AtomicFlag::default(); + assert!(!flag.is_raised()); // false by default + assert!(flag.raise()); + assert!(flag.is_raised()); + assert!(!flag.raise()); + assert!(flag.is_raised()); + } +} diff --git a/cli/util/sync/mod.rs b/cli/util/sync/mod.rs new file mode 100644 index 000000000..28aab7f47 --- /dev/null +++ b/cli/util/sync/mod.rs @@ -0,0 +1,14 @@ +// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. + +mod async_flag; +mod atomic_flag; +mod sync_read_async_write_lock; +mod task_queue; +mod value_creator; + +pub use async_flag::AsyncFlag; +pub use atomic_flag::AtomicFlag; +pub use sync_read_async_write_lock::SyncReadAsyncWriteLock; +pub use task_queue::TaskQueue; +pub use task_queue::TaskQueuePermit; +pub use value_creator::MultiRuntimeAsyncValueCreator; diff --git a/cli/util/sync/sync_read_async_write_lock.rs b/cli/util/sync/sync_read_async_write_lock.rs new file mode 100644 index 000000000..8bd211aa7 --- /dev/null +++ b/cli/util/sync/sync_read_async_write_lock.rs @@ -0,0 +1,62 @@ +// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. + +use deno_core::parking_lot::RwLock; +use deno_core::parking_lot::RwLockReadGuard; +use deno_core::parking_lot::RwLockWriteGuard; + +use super::TaskQueue; +use super::TaskQueuePermit; + +/// A lock that can be read synchronously at any time (including when +/// being written to), but must write asynchronously. +pub struct SyncReadAsyncWriteLockWriteGuard<'a, T: Send + Sync> { + _update_permit: TaskQueuePermit<'a>, + data: &'a RwLock<T>, +} + +impl<'a, T: Send + Sync> SyncReadAsyncWriteLockWriteGuard<'a, T> { + pub fn read(&self) -> RwLockReadGuard<'_, T> { + self.data.read() + } + + /// Warning: Only `write()` with data you created within this + /// write this `SyncReadAsyncWriteLockWriteGuard`. + /// + /// ```rs + /// let mut data = lock.write().await; + /// + /// let mut data = data.read().clone(); + /// data.value = 2; + /// *data.write() = data; + /// ``` + pub fn write(&self) -> RwLockWriteGuard<'_, T> { + self.data.write() + } +} + +/// A lock that can only be +pub struct SyncReadAsyncWriteLock<T: Send + Sync> { + data: RwLock<T>, + update_queue: TaskQueue, +} + +impl<T: Send + Sync> SyncReadAsyncWriteLock<T> { + pub fn new(data: T) -> Self { + Self { + data: RwLock::new(data), + update_queue: TaskQueue::default(), + } + } + + pub fn read(&self) -> RwLockReadGuard<'_, T> { + self.data.read() + } + + pub async fn acquire(&self) -> SyncReadAsyncWriteLockWriteGuard<'_, T> { + let update_permit = self.update_queue.acquire().await; + SyncReadAsyncWriteLockWriteGuard { + _update_permit: update_permit, + data: &self.data, + } + } +} diff --git a/cli/util/sync/task_queue.rs b/cli/util/sync/task_queue.rs new file mode 100644 index 000000000..6ef747e1a --- /dev/null +++ b/cli/util/sync/task_queue.rs @@ -0,0 +1,266 @@ +// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. + +use std::collections::LinkedList; +use std::sync::Arc; + +use deno_core::futures::task::AtomicWaker; +use deno_core::futures::Future; +use deno_core::parking_lot::Mutex; + +use super::AtomicFlag; + +#[derive(Debug, Default)] +struct TaskQueueTaskItem { + is_ready: AtomicFlag, + is_future_dropped: AtomicFlag, + waker: AtomicWaker, +} + +#[derive(Debug, Default)] +struct TaskQueueTasks { + is_running: bool, + items: LinkedList<Arc<TaskQueueTaskItem>>, +} + +/// A queue that executes tasks sequentially one after the other +/// ensuring order and that no task runs at the same time as another. +/// +/// Note that this differs from tokio's semaphore in that the order +/// is acquired synchronously. +#[derive(Debug, Default)] +pub struct TaskQueue { + tasks: Mutex<TaskQueueTasks>, +} + +impl TaskQueue { + /// Acquires a permit where the tasks are executed one at a time + /// and in the order that they were acquired. + pub fn acquire(&self) -> TaskQueuePermitAcquireFuture { + TaskQueuePermitAcquireFuture::new(self) + } + + /// Alternate API that acquires a permit internally + /// for the duration of the future. + #[allow(unused)] + pub fn run<'a, R>( + &'a self, + future: impl Future<Output = R> + 'a, + ) -> impl Future<Output = R> + 'a { + let acquire_future = self.acquire(); + async move { + let permit = acquire_future.await; + let result = future.await; + drop(permit); // explicit for clarity + result + } + } + + fn raise_next(&self) { + let front_item = { + let mut tasks = self.tasks.lock(); + + // clear out any wakers for futures that were dropped + while let Some(front_waker) = tasks.items.front() { + if front_waker.is_future_dropped.is_raised() { + tasks.items.pop_front(); + } else { + break; + } + } + let front_item = tasks.items.pop_front(); + tasks.is_running = front_item.is_some(); + front_item + }; + + // wake up the next waker + if let Some(front_item) = front_item { + front_item.is_ready.raise(); + front_item.waker.wake(); + } + } +} + +/// A permit that when dropped will allow another task to proceed. +pub struct TaskQueuePermit<'a>(&'a TaskQueue); + +impl<'a> Drop for TaskQueuePermit<'a> { + fn drop(&mut self) { + self.0.raise_next(); + } +} + +pub struct TaskQueuePermitAcquireFuture<'a> { + task_queue: Option<&'a TaskQueue>, + item: Arc<TaskQueueTaskItem>, +} + +impl<'a> TaskQueuePermitAcquireFuture<'a> { + pub fn new(task_queue: &'a TaskQueue) -> Self { + // acquire the waker position synchronously + let mut tasks = task_queue.tasks.lock(); + let item = if !tasks.is_running { + tasks.is_running = true; + let item = Arc::new(TaskQueueTaskItem::default()); + item.is_ready.raise(); + item + } else { + let item = Arc::new(TaskQueueTaskItem::default()); + tasks.items.push_back(item.clone()); + item + }; + drop(tasks); + Self { + task_queue: Some(task_queue), + item, + } + } +} + +impl<'a> Drop for TaskQueuePermitAcquireFuture<'a> { + fn drop(&mut self) { + if let Some(task_queue) = self.task_queue.take() { + if self.item.is_ready.is_raised() { + task_queue.raise_next(); + } else { + self.item.is_future_dropped.raise(); + } + } + } +} + +impl<'a> Future for TaskQueuePermitAcquireFuture<'a> { + type Output = TaskQueuePermit<'a>; + + fn poll( + mut self: std::pin::Pin<&mut Self>, + cx: &mut std::task::Context<'_>, + ) -> std::task::Poll<Self::Output> { + if self.item.is_ready.is_raised() { + std::task::Poll::Ready(TaskQueuePermit(self.task_queue.take().unwrap())) + } else { + self.item.waker.register(cx.waker()); + std::task::Poll::Pending + } + } +} + +#[cfg(test)] +mod test { + use deno_core::futures; + use deno_core::parking_lot::Mutex; + use std::sync::Arc; + + use super::*; + + #[tokio::test] + async fn task_queue_runs_one_after_other() { + let task_queue = TaskQueue::default(); + let mut tasks = Vec::new(); + let data = Arc::new(Mutex::new(0)); + for i in 0..100 { + let data = data.clone(); + tasks.push(task_queue.run(async move { + deno_core::unsync::spawn_blocking(move || { + let mut data = data.lock(); + assert_eq!(*data, i); + *data = i + 1; + }) + .await + .unwrap(); + })); + } + futures::future::join_all(tasks).await; + } + + #[tokio::test] + async fn task_queue_run_in_sequence() { + let task_queue = TaskQueue::default(); + let data = Arc::new(Mutex::new(0)); + + let first = task_queue.run(async { + *data.lock() = 1; + }); + let second = task_queue.run(async { + assert_eq!(*data.lock(), 1); + *data.lock() = 2; + }); + let _ = tokio::join!(first, second); + + assert_eq!(*data.lock(), 2); + } + + #[tokio::test] + async fn task_queue_future_dropped_before_poll() { + let task_queue = Arc::new(TaskQueue::default()); + + // acquire a future, but do not await it + let future = task_queue.acquire(); + + // this task tries to acquire another permit, but will be blocked by the first permit. + let enter_flag = Arc::new(AtomicFlag::default()); + let delayed_task = deno_core::unsync::spawn({ + let enter_flag = enter_flag.clone(); + let task_queue = task_queue.clone(); + async move { + enter_flag.raise(); + task_queue.acquire().await; + true + } + }); + + // ensure the task gets a chance to be scheduled and blocked + tokio::task::yield_now().await; + assert!(enter_flag.is_raised()); + + // now, drop the first future + drop(future); + + assert!(delayed_task.await.unwrap()); + } + + #[tokio::test] + async fn task_queue_many_future_dropped_before_poll() { + let task_queue = Arc::new(TaskQueue::default()); + + // acquire a future, but do not await it + let mut futures = Vec::new(); + for _ in 0..=10_000 { + futures.push(task_queue.acquire()); + } + + // this task tries to acquire another permit, but will be blocked by the first permit. + let enter_flag = Arc::new(AtomicFlag::default()); + let delayed_task = deno_core::unsync::spawn({ + let task_queue = task_queue.clone(); + let enter_flag = enter_flag.clone(); + async move { + enter_flag.raise(); + task_queue.acquire().await; + true + } + }); + + // ensure the task gets a chance to be scheduled and blocked + tokio::task::yield_now().await; + assert!(enter_flag.is_raised()); + + // now, drop the futures + drop(futures); + + assert!(delayed_task.await.unwrap()); + } + + #[tokio::test] + async fn task_queue_middle_future_dropped_while_permit_acquired() { + let task_queue = TaskQueue::default(); + + let fut1 = task_queue.acquire(); + let fut2 = task_queue.acquire(); + let fut3 = task_queue.acquire(); + + // should not hang + drop(fut2); + drop(fut1.await); + drop(fut3.await); + } +} diff --git a/cli/util/sync/value_creator.rs b/cli/util/sync/value_creator.rs new file mode 100644 index 000000000..57aabe801 --- /dev/null +++ b/cli/util/sync/value_creator.rs @@ -0,0 +1,213 @@ +// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. + +use std::sync::Arc; + +use deno_core::futures::future::BoxFuture; +use deno_core::futures::future::LocalBoxFuture; +use deno_core::futures::future::Shared; +use deno_core::futures::FutureExt; +use deno_core::parking_lot::Mutex; +use tokio::task::JoinError; + +type JoinResult<TResult> = Result<TResult, Arc<JoinError>>; +type CreateFutureFn<TResult> = + Box<dyn Fn() -> LocalBoxFuture<'static, TResult> + Send + Sync>; + +#[derive(Debug)] +struct State<TResult> { + retry_index: usize, + future: Option<Shared<BoxFuture<'static, JoinResult<TResult>>>>, +} + +/// Attempts to create a shared value asynchronously on one tokio runtime while +/// many runtimes are requesting the value. +/// +/// This is only useful when the value needs to get created once across +/// many runtimes. +/// +/// This handles the case where the tokio runtime creating the value goes down +/// while another one is waiting on the value. +pub struct MultiRuntimeAsyncValueCreator<TResult: Send + Clone + 'static> { + create_future: CreateFutureFn<TResult>, + state: Mutex<State<TResult>>, +} + +impl<TResult: Send + Clone + 'static> std::fmt::Debug + for MultiRuntimeAsyncValueCreator<TResult> +{ + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + f.debug_struct("MultiRuntimeAsyncValueCreator").finish() + } +} + +impl<TResult: Send + Clone + 'static> MultiRuntimeAsyncValueCreator<TResult> { + pub fn new(create_future: CreateFutureFn<TResult>) -> Self { + Self { + state: Mutex::new(State { + retry_index: 0, + future: None, + }), + create_future, + } + } + + pub async fn get(&self) -> TResult { + let (mut future, mut retry_index) = { + let mut state = self.state.lock(); + let future = match &state.future { + Some(future) => future.clone(), + None => { + let future = self.create_shared_future(); + state.future = Some(future.clone()); + future + } + }; + (future, state.retry_index) + }; + + loop { + let result = future.await; + + match result { + Ok(result) => return result, + Err(join_error) => { + if join_error.is_cancelled() { + let mut state = self.state.lock(); + + if state.retry_index == retry_index { + // we were the first one to retry, so create a new future + // that we'll run from the current runtime + state.retry_index += 1; + state.future = Some(self.create_shared_future()); + } + + retry_index = state.retry_index; + future = state.future.as_ref().unwrap().clone(); + + // just in case we're stuck in a loop + if retry_index > 1000 { + panic!("Something went wrong.") // should never happen + } + } else { + panic!("{}", join_error); + } + } + } + } + } + + fn create_shared_future( + &self, + ) -> Shared<BoxFuture<'static, JoinResult<TResult>>> { + let future = (self.create_future)(); + deno_core::unsync::spawn(future) + .map(|result| result.map_err(Arc::new)) + .boxed() + .shared() + } +} + +#[cfg(test)] +mod test { + use deno_core::unsync::spawn; + + use super::*; + + #[tokio::test] + async fn single_runtime() { + let value_creator = MultiRuntimeAsyncValueCreator::new(Box::new(|| { + async { 1 }.boxed_local() + })); + let value = value_creator.get().await; + assert_eq!(value, 1); + } + + #[test] + fn multi_runtimes() { + let value_creator = + Arc::new(MultiRuntimeAsyncValueCreator::new(Box::new(|| { + async { + tokio::task::yield_now().await; + 1 + } + .boxed_local() + }))); + let handles = (0..3) + .map(|_| { + let value_creator = value_creator.clone(); + std::thread::spawn(|| { + create_runtime().block_on(async move { value_creator.get().await }) + }) + }) + .collect::<Vec<_>>(); + for handle in handles { + assert_eq!(handle.join().unwrap(), 1); + } + } + + #[test] + fn multi_runtimes_first_never_finishes() { + let is_first_run = Arc::new(Mutex::new(true)); + let (tx, rx) = std::sync::mpsc::channel::<()>(); + let value_creator = Arc::new(MultiRuntimeAsyncValueCreator::new({ + let is_first_run = is_first_run.clone(); + Box::new(move || { + let is_first_run = is_first_run.clone(); + let tx = tx.clone(); + async move { + let is_first_run = { + let mut is_first_run = is_first_run.lock(); + let initial_value = *is_first_run; + *is_first_run = false; + tx.send(()).unwrap(); + initial_value + }; + if is_first_run { + tokio::time::sleep(std::time::Duration::from_millis(30_000)).await; + panic!("TIMED OUT"); // should not happen + } else { + tokio::task::yield_now().await; + } + 1 + } + .boxed_local() + }) + })); + std::thread::spawn({ + let value_creator = value_creator.clone(); + let is_first_run = is_first_run.clone(); + move || { + create_runtime().block_on(async { + let value_creator = value_creator.clone(); + // spawn a task that will never complete + spawn(async move { value_creator.get().await }); + // wait for the task to set is_first_run to false + while *is_first_run.lock() { + tokio::time::sleep(std::time::Duration::from_millis(20)).await; + } + // now exit the runtime while the value_creator is still pending + }) + } + }); + let handle = { + let value_creator = value_creator.clone(); + std::thread::spawn(|| { + create_runtime().block_on(async move { + let value_creator = value_creator.clone(); + rx.recv().unwrap(); + // even though the other runtime shutdown, this get() should + // recover and still get the value + value_creator.get().await + }) + }) + }; + assert_eq!(handle.join().unwrap(), 1); + } + + fn create_runtime() -> tokio::runtime::Runtime { + tokio::runtime::Builder::new_current_thread() + .enable_all() + .build() + .unwrap() + } +} |